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We define a map ~ on the space of quasifree states of the CCR or CAR of more 
than one harmonic oscillator which increases entropy except at fixed points of 3. 
The map z is the composition of a doubly stochastic map  T* and the quasifree 
reduction Q. Under  mixing conditions on T, iterates of z take any initial state to 
the Gibbs state, provided that  the oscillator frequencies are mutually rational. 
We give an example of a system with three degrees of freedom with energies c01, 
(D2, and co 3 mutually irrational, but  obeying a relation nlco t +nzoJ z =n3~03, 
nie Z. The iterated Boltzmann map  converges from an initial state p to indepen- 
dent Gibbs states of the three oscillators at betas (inverse temperatures) ill , /?z, 
f13 obeying the equation nl c01fll + n2e)2f12 = n3033f13. The equilibrium state can 
be rewritten as a grand canonical state. We show that for two, three, or four 
fermions we can get the usual rate equations as a special case. 

KEY WORDS: Boltzmann; entropy; quasifree projection. 

1. I N T R O D U C T I O N  

There are two main problems of nonequilibrium statistical mechanics, In 
the first, a system, not necessarily in a thermal state, is in thermal contact 
with a heat bath. This is an infinite system at a definite beta (our word for 
inverse temperature). The problem is to describe how the system warms up 
or cools down to the same beta as the heat bath. Heat is exchanged, being 
driven by the beta gradient, and the average energy of the system is not 
constant in time. To get the grand canonical ensemble, the system 
exchanges energy and particles with the heat bath, the particle flow being 
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driven by the chemical potential. Such theories are described 
phenomenologically by a linear stochastic process (1) or more ambitiously 
by a limit of Hamiltonian systems. (2'3) 

The second problem asks the question, how did the heat bath get its 
beta in the first place? The only successful type of theory is based on the 
Boltzmann equation (a) or its quantum version. (5~ This is an ambitious 
program, attempting to work from a microscopic model of the interactions 
of particles to derive the laws of stochastic motion of a single particle in a 
dilute gas. One hopes to prove that the state of the particle converges to 
the Gibbs state at some beta. In this process the average energy is constant 
in time, reflecting the redistributions among the gas molecules, rather than 
the loss or gain of heat by the system as in the first problem. We are 
interested in the second type of problem, which we treat phenomeno- 
logically rather than from a particular microscopic model. 

The present paper is a sequel to Ref. 6, where we studied a special 
class of population models with discrete time, which imitates the classical 
Boltzmann equation, and Ref. 7, where a quantum version was formulated. 
In either case a map z, the "Boltzmann map," is defined, mapping states to 
states, the iterates of which, when applied to an initial state p, converge to 
a Gibbs state p~. For  finite systems, fl is fixed by the requirement that p 
and pe have the same average energy. 

The map r is the composition of a doubly stochastic map �9 on the 
two-particle states of the form p | p, representing a two-particle scattering 
conserving energy, and the conditional expectation P onto a state p' of the 
first particle. One then forms p'|  and repeats; this step imitates 
Boltzmann's Stosszahlansatz, expressing the fact that before a collision the 
two participating particles are chosen at random, independently, from the 
total population. Thus, the models in Refs. 6 and 7 are, like Boltzmann's, 
descritions of the dynamics of dilute gases. But even in our quantum case (7) 
it is taken that the particles are distinguishable. It is therefore desirable to 
have a second-quantized version for Bose and Fermi statistics. This we 
construct here. 

Let K be a complex Hilbert space with dim K = N < ~ .  The space K is 
called the "one-particle space" and a vector in K describes the state of a 
single particle. If the particle is a boson, then the (pure normal) state of a 
system of particles is described by a vector in Fs(K), the symmetric Fock 
space over K: 

F~(K)= C@ K@ (K| K)~@ (K| K| K)~@ ... 

where ( K |  K)s is the Hilbert space of symmetric second-rank tensors over 
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K, etc. If the particle is a fermion, then we use the antisymmetric Fock 
space: 

/'A(K) = C ~ KO A Z K ~  . . .  ANK 

where A~(K) is the Hilbert space of totally antisymmetric tensors of rank k. 
We take as the (bounded) observables the Hermitian elements of 

~r = B(Fs(K)) in the case of bosons. This is the c*-algebra of all bounded 
operators on Fock space, and is generated by the creation and annihilation 
operators a~1 (we denote a* or aj by aft ,  j =  1, 2 ..... N): any bounded 
operator is a function of these. 

For  fermions, the creators and annihilators b~ also generate 
B(FA(K)), the algebra of all operators, but we take as the observables the 
algebra ~r ~_ B(FA(K)) generated by gauge-invariant functions of b f .  Thus, 
an observable is a Hermitian element of B(FA(K)), invariant under the 
automorphisms that on b f  reduce to gauge transformations of the first 
kind, namely, bj -~ ei~ j = 1,..., N, for 0 ~ ~. 

A state of the system will mean a normal state on the c*-algebra d ,  
that is, a positive linear map from ~r to C of the form A ~ Tr(pA), A ~ ~'. 
Here, p is the density matrix of the state, i.e., a positive operator in B(F) of 
trace 1. For fermions, it is natural to consider only even states. 

It has been argued 13) that irreversibility in quantum mechanics should 
be introduced by replacing the one-parameter group of time-evolution by a 
one-parameter semigroup of completely positive stochastic maps. Complete 
positivity, as opposed to positivity, will play no role in this paper. A 
stochastic map is a linear map T from ~r to d ,  taking positive operators 
to positive operators, and such that T1 = 1. Such a T is called a super- 
operator in the literature, because it acts on the space of operators. The 
space of Hilbert-Schmidt operators is a Hilbert space with scalar product 
{A, B )  = T r a c e ( A ' B ) .  Let T* be the adjoint of T in this space, so that 
(T*A, B)=  (A, TB). Then we shall be interested in bistochastic maps, 
i.e., T and T* are both stochastic. Then T and T* are both trace-preser- 
ving, and leave the identity operator of d fixed. The entropy of a density 
matrix is s ( p ) =  -T race (p  log p). The function x l o g x  is convex; so, as 
explained in the nice book of Alberti and Uhlmann [-Ref. 8, 
Theorem 2-2(f)], the entropy of a state is not decreased by a bistochastic 
map, i.e., 

s(r*p) >1 s(p) 

In a dilute gas, two particles scatter and leave each other's influence in 
a time short compared with the mean time between collisions. As an 
idealization, we describe the collision by a scattering matrix S computed as 
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if there were an infinite time between collisions. This induces the scattering 
automorphism (Heisenberg picture) 

Ts : A -+ SAS*, A ~ 

on the algebra of observables, and its dual action (Schr6dinger picture) 

T*" p ~ S* pS  

on the space of density matrices. This map is bistochastic. It is natural to 
replace this by a more general bistochastic map 

A --* TA, p ~ T* p 

This takes into account unknown features of the model that are not men- 
tioned in our simplified description. For example, Spohn (5) has derived a 
linear master equation in quantum mechanics from a Hamiltonian model 
with random impurities. 

In our model, we may imagine that the scattering automorphism 
A ~ SAS* is obtained from an interaction V of short range, so that the 
total Hamiltonian H +  V is effective during the scattering, and 
H=~oJ~a'f lak is the energy operator for the ingoing and outgoing par- 
ticles. The scattering conserves energy, so that [S, H]  = 0. If V is a random 
potential, i.e., V is an operator-valued function of a sample point ~o E ~, 
where (f2, #) is a probability space, then the average effect of the scattering 
automorphism is the bistochastic map 

T~" A --* fa S(o~) AS*(co) dkt(co) 

Such maps, incidentally, are also completely positive. Since each S(co) 
commutes with H, it commutes with the spectral resolutions of H; so if 
H =  ~ EP(E) is the spectral resolution of H, we see that 

L P ( E )  = p(e)  = I P(E) = P(E) 

for all E. Similarly, T * P ( E ) =  P(E). It is therefore natural to make this 
property the definition of an energy-conserving bistochastic map: 

Def in i t i on .  Let ~ be a Hilbert space and H = ~  EP(E) a self- 
adjoint operator on J~cf. Let T be a bistochastic map, B ( ~ ) ~  B() f ) .  We 
say T is H-conserving if TP(E) = P(E) = T*P(E) for all E. 
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Let T be stochastic. Then the quantum analogue of a Markov chain is 
the sequence of states {T*~p},,=o,1... = {p(n)}, where p is the initial state. 
This might be taken as the time evolution of a system. Perhaps a better 
model, with continuous time, would be to regard n as the number  of 
collisions that have occurred by a random time, rather than as time itself. 
This would allow for the possibility that the time intervals between 
collisions are not all the same, but follow the law of a waiting time. We say 
that p(n) is a linear process because it is linear as a function of p. 

Glauber  (1) has used a (classical) linear stochastic process to describe 
the approach to equilibrium of the Ising model in a heat bath at beta /~. 
The stochastic map represents the intrinsic dynamics of the system. It is 
easy to see that a linear process cannot in general describe the approach to 
equilibrium of an autonomous system. For, let 7', a stochastic map, be such 
that T*'pl--~P/~I and T*'P2-~P~2 as n--* ~ ,  where p~ is the canonical 
state 

p~ = e -/~H/Tr e -~n 

and f l l r  f12" 
Let wl, w2 ~>0, wl + w2 = 1, and let p = w~pl + w2P2 be a mixture o f p l  

and P2. Then T*"p converges to a mixture of p,~ and P,2, wlPth + W2p&' 
which is not a canonical state except in trivial cases. The linear model 
describes a system which ends up at fil with probability wl and at f12 with 
probability w2, rather than the physical mixture, which we hoped for. 

A linear bistochastic process can describe the approach to the 
microcanonical state. For, suppose that the vectors of a Hilbert space -J~, 
with dim J f  = k < oo, describe the states of the system, each state having 
the same energy E. Let T be a bistochastic map on the Hilbert space of 
Hilbert Schmidt such that 1 is a simple eigenvalue of TT*. Then for any 
initial density matrix p, one can prove that T*np --* ( l /k)  lk. (7) This limit is 
the uniformly distributed state at energy E, also known as the micro- 
canonical state. 

Suppose now we have a system described by a Hamiltonian 
H = Z E P ( E )  with eigenvalues Eo, EI ..... each of finite multiplicity 
ko, kl ..... Let T be an H-conserving bistochastic map. Then T* conserves 
the mean energy of any state p with p(H) < oo ; for 
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Regarded as a density matrix, P(E~)/k~ is the microcanonical state of 
energy E~. The property T* P( E) = P( E) then means that the micro- 
canonical states are fixed points of T*, and so is any mixture Z~ w~P(E~). 
Such states constitute the positive functions of H of unit trace, that is, 
they are the ergodically mixed states. Let us say that an H-conserving 
bistochastic map T is ergodic if the only fixed points of TT* are erodically 
mixed. This is as much mixing as can be expected from an energy- 
conserving map. Since T* cannot redistribute the probability among the 
energy shells, further stochasticity is needed, if any initial state is to con- 
verge to a canonical state. 

In Boltzmann's work, further stochasticity is postulated, namely, the 
Stosszahlansatz. This requires that after two particles have been scattered, 
they reenter the population as independent particles. For  a second-quan- 
tized model, we suggest that this is well-described by applying the quasifree 
projection Q after the map T*. The projection Q is described as follows. (9) 
Let p be a density matrix for the CCR or CAR with finite second moments: 
p(a~ a~ ) is finite (this is automatic for the CAR). Then Qp is the quasifree 
state with the same first and second moments as p. As shown in Ref. 9, Q is 
entropy-increasing, i.e., s(Qp))s(p). 

The quasifree projection Q conserves the average of every quadratic 
function of the a e, and in particular a Hamiltonian of the form 
H = ~ k  * c0~ak ak. We interpret Q as the extra stochasticity caused by elastic 
scattering, during the time between the collisions of the quanta themselves, 
from large random impurities, random walls, stray radiation, and degrees 
of freedom omitted from our description. The usual argument of 
Boltzmann, that the particle just scattering is unlikely (in three-dimensional 
space) to meet the same particle it has just met, and is more likely to meet 
a fresh, uncorrelated sample particle, loses some of its force in a theory 
with indistinguishable particles; on the other hand, the cluster properties of 
the scattering, as well as full rescattering corrections, are supposed to be 
described by T, so we avoid one of the criticisms. 

We define the Boltzmann map by r = QT* and examine conditions 
under which rnp converges to a canonical state p~ as n--* co. For this, T 
must have some mixing properties; for example, T =  1 is energy-conserving, 
but then Tn= Q"= Q does not work. It is easy to construct examples of 
ergodic T: let TT* reduce the density matrix [P]ij in the energy basis to a 
diagonal matrix, where, on the subspace F(E) of energy E, TT*p is 
T r [ P (E)  pP(E)]/dim F(E) times the identity on F(E). 

The proof of convergence is similar to that of Refs. 6 and 7. We use 
the increasing entropy to show that any convergent subsequence of vnp 
converges to a simultaneous eigenoperator of Q and TT*, while preserving 
the mean energy. It turns out that in the case where the oscillator frequen- 
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cies {CO~} are mutually rational, then there is only one quasifree, 
ergodically mixed state of given energy, namely a canonical state p~ with fl 
fixed by p~(H)= p(H). Hence all converging subsequences have the same 
limit, so the sequence itself converges, to p/~. The condition that the ratios 
COjCOk are rational is exactly the condition for instability or chaotic motion 
of a classical system of oscillators. (n) The chaotic motion is caused by the 
resonances among the oscillators when rncol = nCO2. The same mechanism is 
at work in the quantum case. If, however, all ratios are irrational, and no 
relation exists among the (o k with integer coefficients, then the spectrum of 
H is simple, and no energy-conserving maps exist that mix the oscillators 
together. Thus, for example, the tensor product of Gibbs states a~ and ap2 
of two oscillators is quasifree and ergodically mixed, but is not a canonical 
state of the combined system if fll r 

The reader might be puzzled about how a system of oscillators with a 
finite number of degrees of freedom, and a discrete energy with finite 
multiplicity, could possibly converge to thermodynamic equilibrium. The 
answer is that randomness is put in by hand in the choice of T and the 
application of Q, to describe the effects of the myriad of unknown degrees 
of freedom and their interactions. We do this because we sincerely believe 
in the use of probability in physics. Irreversibility is no more surprising 
than the damping of a classical oscillator obeying the equation 

j~ -1- 72 -~ CO2X = 0 

As an intermediate example between the rational and irrational cases, 
we give an example of three oscillators with mutually irrational energies 
obeying col + a)2 = 2co3; T~p converges to a product of independent Gibbs 
states of betas i l l ,  fi2, f13, related by col fil + CO2]~2 ~-2CO3fl3. We also work 
out an example of two fermions of the same frequency, and show that two 
particles with densities nl and n 2 approach equilibrium at an exponentially 
decreasing rate via a linear Markov chain. When we include two-particle 
scattering, a nonlinear model results. 

The limitation of the theory to discrete time does not seem to be 
essential. It would be interesting to formulate these questions in a second- 
quantized version of Ref. 12. 

2. P R O O F  OF C O N V E R G E N C E  

Let F be the Fock space (either boson or fermion) of the N oscillators 
with energies COl,..., CON, and let H =  Y~= i cokak* ak be the Hamiltonian. 

A quasifree state p of the CCR or CAR is determined by the complex 
parameters p(aea#x) (see, e.g., Ref. 9). A state has average energy o ~ if 
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P(~k coka*a~)= g;  in such states the parameters run over a bounded set. 
This is because co~ > 0, so the positivity of p implies 

p(a~ ak) ~ C/min~ co~ 

The Schwarz inequality then gives a similar bound on p(aj ak ). 
Let r = QT*, where Q is the quasifree map and T is bistochastic and 

conserves energy, as in Section 1. Then, for any initial state p of energy g 
the sequence {~np}~_o,1,.. lies in the co*-compact set of states, and also the 
parameters of the two-point functions lie in a compact set. Therefore, it has 
a W* convergent subsequence whose two-point functions converge. To 
show that {rnp} itself converges, it is enough to show that every 
convergent subsequence has the same limit. 

k e m m a  1. Let T be bistochastic. Then s(T*p)>s(p) unless p is a 
fixed point of TT*. 

Proof. We proved (Ref. 7, Lemma 2.1) that 

s(T*p)-s(p) >1�89 ( 1 -  TT*) p)2 

where (A, 9>2 =Tr(A*B) .  Also, 1 -  TT* is a positive superoperator, and 
so can be written as x'x, say. Then, let p = Po | P• Po is the component of 
p in the subspace of operators invariant under TT*. Then 

s(T*p)-s(p)>~ �89 • ( 1 -  TT*)(po@p• > 
_ _ 1  • -~(p ,(1-TT*)p• 

'<~• x*xp• >=�89177 2 

If this is zero, then xpa=O, so x*xp• so ( 1 - T T * ) p •  i.e., p~- is 
invariant under TT*, and so is zero. Hence s(T*p)>s(p) unless p is a 
fixed point of TT*. 

L e m m a  2. Suppose T, T* map each P(E) to itself. Let p have 
average energy E. Then the limit of any convergent subsequence of 
{z"p}n_o,~,.. is a quasifree fixed point of TT*. 

Proof. All states rnp have energy d ~, and so the limit has energy g. 
Also, s(T*p)>1 s(p), ~8) and s(QT*p)>~ S(T*p). (9) Hence, the entropy of rnp 
is an increasing sequence, and being bounded (by the entropy of the 
canonical state p~), converges as n - ,  oe. Entropy is a continuous function 
on quasifree states of energy d ~, since p log p is a continuous function of 
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the (finitely many) parameters p ( a f a ~ ) .  Hence, if {rn~p}j=1.2 .... is the 
convergent subsequence, we have 

S ( p ~ ) =  S lira ('r~Jp) = lira S ( r ~ p ) =  lira S ( r ~ p ) -  - S~ 

say. Hence the limit of any convergent subsequence has the same entropy. 
Also, r is a continuous function of the state parameters, so 

S(rp~) = S( lim r(r"Jp)) = So~ 

Now, S(Qp)> S(p) unless p is quasifree. (9) Hence T*p~ is quasifree; and 
S ( p ~ ) = S ( Q T * p ~ ) = S ( T * p ~ ) .  Hence, by Lcmma 1, p~ is a fixed point 
of TT*. It is quasifree, being the limit (in the sense of two-point functions) 
of quasifree states; this proves Lemma 2. 

k e m m a  3. Suppose the frequencies co~,..., con are such that the only 
quasifree, ergodically mixed states are canonical, i.e., of the form 
p ,  = e - ' N / T r  e ,H for some ft. Suppose T conserves energy and is ergodic; 
then, for any state p of finite energy d ~ r"p ~ pfi, where fl is determined 
from ply(H) = do. 

Proof. By Lemma 2, any convergent subsequence of rnp converges to 
a quasifree, ergodically mixed state. By assumption, this will be a canonical 
state p, .  Since the sense of the convergence is in the topology given by the 
parameters of the two-point functions (as well as W*), the energy of the 
limit state is d ~ and so fl is determined. Thus, all convergent subsequences 
have the same limit. Therefore rnp ~ p~. 

T h e o r e m  1. Let co1,..-, C~ > 0 be mutually rational, and consider a 
bosonic system with Hamiltonian y~N= t COja* a i. Let T be ergodic and p a 
state of energy do. Then rnp converges to the canonical state p ,  of energy & 

Proof. Let p~ be a limit point of r"p. By Lemma 2, p~ is a quasifree 
fixed point of TT*, with poo(H)= d ~ and since Tis  ergodic, p ~ ,  in the par- 
ticle basis, is diagonal and is a multiple of the identity on each energy 
eigenspace. Thus p~(a f  ~ a~ ) =  0 if j r  k, so the oscillators are uncorrelated 
and, being quasifree, are independent. The restriction a k of Po~ to the j t h  
oscillator is stationary, so r 0 = * * ak(a~ a~ ). It is quasifree and so is 
determined by r say. It is therefore a canonical state, at ilk, 
say, for the Hamiltonian - * Hk-- Co~ak ak, with flk determined by 

Tr(a*ake ~H~)/Tr(e-'"k) =nk 

Hence, p~  =ar174  .-- | 
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Let integers nl,  n2 be such that n160~ = n2602. Then the states with nl 
quanta 60~ and n2 quanta 602 (and no other quanta) have the same energy. 
The projectors onto these states therefore have the same weight in the 
density matrix of any ergodically mixed state. In p~, these weights are 

e " ~ t e  ~176 N 

and 

e -0#1 e -  N2~ ' "  �9 e-~ 1 �9 �9 �9 Z N  

respectively (where Zk is the partition function for one degree of freedom at 
beta ilk). Hence 

- n 1 6 0 1 f l l  = - n 2 6 0 2 ~ 2 ,  i.e., f l l=f l2  

Similarly, fll . . . . .  fiN=/~1 and any quasifree, ergodically mixed state is 
p~. Convergence follows from Lemma 3. This proves Theorem 1. 

4. FURTHER EXAMPLES 

An interesting possibility is where c@60~ is not rational, but where an 
integer relation n~60~ + n260 2 q- . . . .  n360 3 + ...  holds with at least three 
terms. Then a quasifree stationary state must as usual be the product 
a ~ | 1 7 4 1 7 4  However, now the Fock states In~,n>0, . . . )  and 
]0,0, n3n...) have the same energy, and in any ergodically mixed state, 
must come in with the same weight. Hence 

e n i c ~  f l l  d n2~t~2f12 " " �9 ~ C  n3c~  - �9 - 

giving the equations 

' v / 1 6 0 1  f l l  - b / ' / 2 6 0 2 f l 2  "1- " ' "  n 3 6 0 3 f 1 3  -1- " ' "  

for each such relation among the (o's. The classical theory of systems ~11) 
usually treats only the two cases where either all co's are mutually rational 
(the chaotic case) or no rational relationship between any number of them 
holds (the stable case). It would be interesting to ask if the intermediate 
case, where 60j60~ is irrational, but a relationship with integer coefficients 
holds among three or more 60's, has any significance for the stability theory 
of classical systems, such as the theory of gears with a real number  of teeth. 

We now consider the example with three degrees of freedom, with 
o~ = ~ - 3, 602 = 4 - ~z, o) 3 = �89 these obey 60~ + 602 = 2~ Scattering maps 
T that conserve energy must convert quanta 601 and 602 into two quanta 
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co3, and so must conserve N =  N1 + N2 + N3, the total number operator. 
Let T be ergodic, mapping the spectral resolutions of N to themselves. Let 

= QT*.  Then, for any p, each state z ' p  has the same energy and mean 
particle number. Any subsequence r'Jp converges to a quasifree, ergodically 
mixed state p~ .  Clearly, p~ has the same energy and particle number as p. 
To show that rnp converges, it is enough to show that there is only one 
such limit. In fact, P o~ is stationary and quasifree, and so must be 
a~ | a& | a~3, with ill, f12 obeying 

ol/31 + co2/32 = 2003/33 

as Po~ is ergodically mixed. This equation, together with the known values 
p ~ ( H )  and po~(N) determine fli,/32, and /33. To see this, note that 
H = HI + H2 + H3 = 001 N1 + c02N2 + c03N3, so for any/3, # we have 

/3 ( H  - # N  ) = (/3 --/3#/co1 ) H,  + (/3 -/31~/co 2 ) H2 + (/3 -/3#/co3 ) H3. 

So, three/3's obeying co=/31 + co2fl2 = 2co3/33 define/3, # by 

/3k =/3 -/3#/cok 

and then as, | a~2 | aB3 is the grand canonical state 
e I~( '-~'Nt/Tre -r HN). This is well known to be determined by ( H )  
and ( N ) .  In this model, N ~ - N 2  is concerved, too: the first and second 
quanta appear or disappear together. This is not an independent conser- 
vation law, but follows that of N and H. 

In general, suppose we have a system of oscillators with energies 
co1 ..... CON, between which a certain number of integer relations hold. Then 
there are always enough conserved number-operators for suitable energy- 
conserving maps T so that the quasifree stationary states a~ | ... | 
can be identified with a grand canonical state 

e - f l ( H  - -  ,u l  U 1 - -  , u 2 N 2  . . . .  )/Z 

for which ( H ) ,  (N1) ,  (N2),..., are determined by the initial state. In this 
way we prove the convergence of the Boltzmann map in the general case. 

This difference between the rational and irrational cases, the first going 
to the canonical state and the second to the grand canonical state, arises 
because we have insisted on the exact conservation of energy. If coj/co~ is 
irrational, and we allow a small violation of the law of energy conservation, 
then we can arrange mixing, but ( H )  is no longer exactly constant with 
time. 

If co s ..... CON are mutually rational, but their ratios are rationals that in 
lowest terms involve large integers, then the mixing only takes place in 

8 2 2 / 4 8 / 3 - 4 - 2 6  
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states of high particle number .  Thus,  the state a~l | - . .  @ o-~N , while not  
ergodically mixed, is nearly so and is nearly a fixed point  of ~ even if 
f l l r  32, etc. Thus,  there is not  much  physical difference between irrat ional  
ratios and rat ional  rat ios with large integers. 

Fo r  fermions, the me thod  of Theo rem 1 no longer works,  since one 
cannot  have n fermions in the same state, n > 1. But if n = m = 1, the p roof  
goes through,  mutatis mutandis, if all c0e are equal. Thus  we have proved  
the following result. 

T h e o r e m  2. Let  (2) = (01 . . . . .  (2) u be the frequencies of N fermion 
oscillators. Let T be ergodic with respect to the Hami l ton ian  
H N , = Z k  (0ae ak. Then znp --+ p~ for any p as n --+ oo. 

Let us illustrate Theorem 2 with an example.  Take  N = 2, and use the 
basis in AC 2 = C 4 given by I0 ), [1 ), [2 ), and [12 ), where [1 ) = a* 10), etc. 
Then (o) 

1 
H =  1 

2 

Let Tp be diagonal,  of the form 

/ :31I 1 Pl (1 - 2 )  Pl +2p2  
T �9 P2 = (1 - 2 ) P 2 + ) ~ p x  

�9 
] 7 3  

�9 i ! t 

= dlag(po,  p~, P2, P;),  0 < 2 < 1  

Then T is ergodic relative to H. The special form of T eliminates the 
correlat ions between the oscillators, since Tp has no terms like ] j ) ( k ]  with 
j :~k .  If the initial state p is P~t|  then z~o is p ~ i |  i.e., we can 
follow the mot ion  of the system entirely in terms of the changes in the 
betas, which are related in a quasifree state to Po, Pl, Pz, P3 by 
Z s = (1 + e -r and 

Po = / l l Z 2  2, Pl = e - ~ t a l l z 2  t 

p 2 = e - ~ 2 Z l l Z 2  1 ' p 3 = e  fll f12211 / 2  I 

Note  that  T*p is not  quasifree, since P'lP'2 ~ P'3P'o in general, which is 
needed for a diagonal  matr ix  to be quasifree. Since the correlat ions in T*p 
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are zero, p " = Q T * p  is determined by n ' l=p ' (a*a l )=p ' l+p '  3 and 
n'2 = p'(a* a2) = P'2 + P'3. This gives the new betas 

(1 + fl'[)-~ = p'l + p~, (1 +fl~')-~ = p2 + p~ 

which is consistent with (but not independent of) p 'o+p]=Z~ 1, 
7, , -1  the marginal distributions. One easily derives the relations p ; + p ~ = - ~  , 

between the densities nl, n 2 of a quasifree state and the p~: 

po=(1--n l ) (1- -n2) ,  p l=n l (1 - -n2 )  

p2=n2(  1 -n l ) ,  P3=nln2 

The action of T is therefore 

p ; =  ( 1 - n , ) ( 1 - n ~ )  

P'I = nl(1 -- n2)( 1 -- 2) + 2n2(1 -- nl) 

p~=n2(1- -n l ) (1  - -2 )+2n1(1 - -n2 )  

p'3= P3=nln2 

The new densities in terms of the old are therefore 

n'l =n2(1- -n l ) (1- -A)+Xn2(1  - -n l )+n~n2= (1--A) nl +2n2 

n~ = nx(1 -- nl)(1 -- 2) + )on1(1 -- n2) + n 1 n 2 = ,:~n 1 + (1 - -  .~) n 2 

This is a linear Markov chain, converging exponentially to the equilibrium 
point, nl=n2,  with nl+n2 the conserved quality. The linearity arises 
because all the action is on the one-particle space. 

Consider now the example of three fermions of the same frequency. In 
the particle basis, the states are ]0), I1), [2), 13), 112), 113), 123), and 
1123). Suppose T causes exchange scattering [12) ~ [13), [13) --, 123), 
etc., according to 

P'12 = P I 2  + )~ + "~P23 - -  2)~P12 

]3'13 = P , 3  -+- J~P23 -t- -'~P 12 - -  22/013 

el3 = p23 + ,~pi2 + ,~pi3 - 2@23 

This is ergodic on the space of two particles. Suppose, again, that T 
reduces p to the diagonal in this basis. T is not ergodic, since TT* leaves 
invariant any diagonal matrix in the space of one-particle states. 
Nevertheless, the only quasifree fixed point of TT* is a Gibbs state, so by 
Lemma 2, r"p converges, since there is only one Gibbs state of that energy. 
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By a method similar to that in the previous example, we find for the 
number density nk = p ( a ~ a k ) ,  n'k = r p ( a * a k )  the relations 

n'l = n l  - 2n l  n2 - 2 n l n 3  + 2)~n2n3 

n'2 = n3 --  ,~n2n3 --  2n2n1 + 2,~n2 n3 

n'3 = n3 --  2 n l n 3  --  2n2n3 + 22nl n2 

which converges, on iterating, to the unique limit (for fixed n 1 + n  2 +n3),  
namely nl = n2 = n3. 

For  four fermions we obtain a simplified version of the usual fermionic 
Boltzmann equation, cubic in n, which we can guarantee converges to 
equilibrium. In the form derived by Hugenholtz, T is the Born 
approximation to the unitary scattering amplitude; it remains an unsolved 
problem to prove convergence to equilibrium in Hugenholtz 's form. If we 
assume no intrinsic three-body scattering and a transition matrix T on the 
space of two particles of the form Taa = (1 - 5 2 )  for a =  ]12), 113),..., k34) 
and T,b = 2, a # b, we get for the densities the equation 

n'l = n l - 32(n~ n2 + nln3 + nl n 4 - -  n 2 n  3 - -  n 2 n  4 - -  n3n  4 

- - n l n 2 n  3 --  n t n 2 n  4 - -  n l n 3 n  4 q- 3n2n3n4)  

which converges to equilibrium. This is because T is ergodic on the two- 
particle subspace (of projections onto (112), 113), etc.) and the only 
quasifree states that are constant on this space are canonical. We can 
understand this equation: - 2  is the rate of scattering out of occupied 
states. 

Finally, if we have four fermions of energies co~, co2, e)3, 0)4, which 
exchange scatter by the process 1 + 2 ~ 3 + 4 with rate 2, then we obtain 
the usual rate equation (t3) by the same method:  

dnj 
d - - - ~ ( t ) = 2 [ n l n 2 ( 1 - n 3 ) ( 1 - n 4 ) - ( 1 - n l ) ( 1 - n z ) n 3 n 4 ] ,  j = 3 , 4  

Please note that whereas the S t o s s z a h l a n s a t z  ( =  hypothesis of molecular 
chaos) is often regarded as a further approximation,  we see it here as a 
n e c e s s a r y  ingredient if the system is to converge to equilibrium. 

To get the usual rate equation if bosons are present, we must take 
note of the fact that a realistic scattering matrix must satisfy clustering; so, 
together with a process like fermion ( 1 ) ~  fermion ( 2 ) +  boson at a certain 
rate, we must include any number of spectator bosons, as in the process 
fermion (1 )+  n bosons ~ fermion ( 2 ) +  (n + 1) bosons with the same rate 
for each "Feynman" diagram. If T fails to satisfy clustering, then we will 
not get the usual boson rate equation as given in Ref. 13. 
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